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LETTER TO THE EDITOR 

Exact real space renormalisation group transformation for the 
dimerised XY chain 
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t Dtpartement de Gtnie  Physique, Ecole Polytechnique, Montreal, QuCbec, Canada 
H3C 3A7 
t Laboratoire d’Etudes des PropriCtCs Electroniques des Solides, Centre National de la 
Recherche Scientifique BP 166, 38042 Grenoble Cidex, France 

Received 27 August 1986 

Abstract. An analytical real space renormalisation group transformation is obtained for 
the one-dimensional spin-f antiferromagnetic dimerised XY model. Using the method of 
Sarker, the recursion relations for the parameters are derived from the mapping between 
blocks of sizes L and L / b ,  for arbitrary size L and scale factor 6. The results for the gap 
and for the critical exponent are shown to converge rapidly toward their exact values. The 
dynamical exponent has 1/L corrections ( b  - 1 )  instead of the usual l / ln  L ones ( b  = L) .  
The differential renormalisation group equations are obtained explicitly. We show that 
the non-analyticity of the scaling function (for the density of energy) stems from a dangerous 
irrelevant variable, the antiferromagnetic coupling. 

The real space renormalisation group ( RG) transformation of Sarker (1984) is applied 
to the dimerised X Y  system. This method consists of the determination of the recursion 
relations for the parameters of the model through the mapping between blocks of 
linear dimensions L and L/ b, where b is the scale factor. The details of the calculation 
will be given below. The procedure reduces to the simple RG transformation when 
b = L and yields the differential renormalisation group equations in the limit L+ 00, 

b + 1, from which one can infer the scaling properties of the model. Sarker’s method 
does not generate additional parameters and the dimension of the space of parameters 
is left invariant upon renormalisation. Therefore, the interpretation of the scaling 
properties of the model in the limit L + 00 and 6 + 1 is relatively simple. In this letter, 
we shall obtain the exact RG transformation for arbitrary L and b. The results for the 
gap, away from criticality, are compared with those obtained by Fields (1979) using 
the simple RG transformation. The critical exponent which characterises the opening 
of the gap and the finite-size corrections for the dynamical exponent are calculated. 
The differential renormalisation group equations are obtained in the limit L+m, b + 1, 
and the scaling laws are interpreted using the exact solution. 

The letter is organised as follows: the block Hamiltonian for the model is first 
solved exactly for an arbitrary odd number of sites. (The solution for an even number 
of sites and for arbitrary boundary conditions can found in Spronken and Kemp 
(l986).) The method of Sarker is then briefly recalled and the RG equations are given. 
The linearisation of these equations is performed and the differential renormalisation 
transformation upon an infinitesimal change of scale is obtained. Finally, scaling 
properties are derived and discussed. 
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The block Hamiltonian for the dimerised X Y  model is (see, for example, Fields 
1979) 

N-1 

H (  N )  = J c [ 1 + (-  1 )'6](U:U,-+ + cc) 
, = I  

where the number of sites, N ( N s 3 ) ,  is assumed to be odd and  where the lattice 
spacing is taken as the unit of distance. The operators U; are the Pauli operators at 
site j. The spectrum of H ( N )  is invariant upon the changes J e - J  and 6 ~ - 6 .  We 
consider an  antiferromagnet and  therefore J > 0 and the dimerisation parameter, 6, is 
6 s 0. When 6 = 1, (1)  is the Hamiltonian for ( N  - 1) /2  non-interacting dimers plus 
a free spin. This is the trivial case and we shall further restrict the dimerisation 
parameter to OS 6 < 1. Free boundary conditions are imposed upon H ( N ) .  

The Hamiltonian (1) can be rewritten in terms of spinless fermion variables using 
the Wigner-Jordan transformation (Jordan and Wigner 1928). This yields 

wheref;(J;) is the creation (annihilation) operator for a spinless fermion at site]. The 
N x N matrix R N  is a symmetric tridiagonal matrix whose non-vanishing components 
are 

(Rh.),,r+l = ( R \ ) , + l t  = J [ l + ( - l ) ' S I  z = 1 , 2  ) . . . )  N - 1 .  (3) 

f i / + l = Q , . z , t 7 + C ( Q , ' 1 J t 7 h t - Q , ' : i t 7 k l )  I = o ,  I , . .  . , ( N - 1 ) / 2  (4a 1 
The Hamiltonian (2) can be diagonalised using the canonical transformation 

h 

I =  1 , 2 , .  . . , ( N -  1) /2  ( 4 b )  

where the new fermion operators, 7 and qkcr ( U  = t, J), correspond to the elementary 
excitations of the system, in terms of which the Hamiltonian is 

fi/ =c  ( q $ ~ - l ? k t + q Z / - I ~ k i )  k L  - 

k 

Note that the variable U in (4) and ( 5 )  has no physical meaning. In  (4), the Q, and 
q with different 1 are the components of the N x 1 column matrices, U and U:, of the 
unitary matrix V = [U, . . . , U:, . . . ] that diagonalises the Hamiltonian. Here, the trans- 
pose of U is U ~ = [ Q , ~ , V ~ , Q , ~ , .  . . , Q , N - l ]  and ( u ( ~ ) ~ = [ Q , ~ " , V T : ~ , @ ~ , .  . 
These vectors U and U:, correspond to the eigenvalues ,YO and Ak in ( 5 ) .  We shall 
now obtain the analytical expressions for all these quantities, together with the set of 
k. 

First, det(R,w) = O  for any N. A o = O  is therefore an eigenvalue of the matrix RN.  
The other eigenvalues are obtained as follows. Let D 2 , + , ( k )  be the determinant of the 
( 2 i +  1) x (2i+ 1)  submatrix ( R , , , ,  - A k 1 2 , + 1 )  involved in the calculation of det(R, - 
h k l N )  = 0, where h k  is the kth eigenvalue. Here, the matrix I/ stands for the I x 1 unit 
matrix and h k  = f ' i k ,  where A k  is defined by (Spronken and Kemp 1986) 

(6)  AI!, = J [ (  1 + a ) * +  (1 - a ) * +  2( 1 - 6') cos k]"' .  

It is easily shown that the recursion relation for the determinant D2,-l(k) is 

J4(l - 6 2 ) 2 D 2 , - 3 ( k )  - 2 J 2 ( 1  - a * )  cos(k)D, , - , (k)+  D 2 , + l ( k )  = O  (7) 
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where i = 1 , 2 , .  . , , ( N  - 1 ) / 2  and where D - , ( k )  = 0. The solution of ( 7 )  is 

D , , + , ( k ) = A k ( I  -62)'u,(COS k)  i =  1 , 2 , .  . . , ( N -  1) /2  (8) 

where U,(cos k )  is the Chebyshev polynomial of the second kind (Gradshteyn and 
Ryzhik 1980). Setting DN( k )  = 0 yields the set of k: 

k = 2 ~ r m / ( N  + 1 )  m = 1 , 2  , . * . ,  ( N - 1 ) / 2 .  ( 9 )  

The spectrum of the Hamiltonian thus consists of AO = 0 and & A k  with k given by (9) .  
The CP and the Y are obtained from the solutions of R,v = 0 and  RNv;  = AkvZ = QUAkV; 
(aT  = 1 ,  cyi = -1). Straightforward algebra yields (within an  arbitrary factor of + l )  

112 

[ ( 1 +  6 )  sin i k +  (1 - 6)  s in( i+  l ) k ]  

i = 0,1,  . . . , ( N  - 1) /2  (100)  

i = 1 , 2 , .  . . , ( N -  1)/2 

and, corresponding to &, = 0, 

= ( - X ) i  ( ~ 

Y I j - ,  = 0 ( 1 l b )  

where the i are identical to those in (10) and where x is defined by 

x = ( 1  - 6 ) / ( 1 +  6 ) .  (12) 

Using (10) and ( l l ) ,  one can show that (with m = ( N  - 1)/2)  

m c CP: ,=1  
,=O 

m c o,,CP:p = 0 all k and (T 
I = O  

from which one infers that the columns of V form an  orthonormal set of eigenvectors. 
Furthermore one can show, using (4) and (13), that the relation between the operator 
for the total number o f f  particles, n, and the operators for the elementary excitations 
is 

where cy, has been defined above. 
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The vacuum state, IO), has no elementary excitation and 710) = 7kv10) = 0 while the 
first excited state is 11) = 7’10). Therefore one finds, using (4), (5) and (14) 

(OlnlO) = ( N -  1)/2 (llnll) = ( N +  1)/2 (15a) 

(Olf2,ll) = 0 all 1 (156) 

where the last equation stems from the symmetry of (2) upon electron-hole exchange. 
States with ( N *  1)/2 particles are those involved in the simple RG calculation for 
which a block of linear size L is mapped onto a single site with two levels (Pfeuty et 
a1 1982). They also arise in the RG transformation of Sarker which we now recall, for 
clarity. 

Let q and q h  be any initial quantities arising in the block Hamiltonian for block 
sizes L and L/b, respectively. The use of the simple RG transformation yields q’= 
f(L, q )  and qb =f(L/b,  q b ) .  The method of Sarker demands that these quantities be 
equal. This leads to qb  = F ( q )  which defines the mapping L- .  L /  b for a scale factor 
b. This will be referred to as the ( L ,  L/b)  mapping. 

The application of this procedure to the X Y  model yields, using (15) and (1 l ) ,  the 
following RG equations: 

together with 
h x I = x .  

Equivalently, one has 

J 
1 - x  l - X L + b  

1 - X b  1 - X L + I  

(1 + - (1  
(1 + + (1 - 

J’=- - 

6’ = 

Equations (16) (or (18)) are the RG recursion relations for the mapping (L, L/b) .  
Equation (17) states that x = 0 (6  = 1) is a trivial fixed point and  that x* = 1 is a critical 
point ( 6 *  = 0 and, from (18a), J *  = 0). These results are known (Fields 1979, Mat- 
suyama and  Okwamoto 1981). (17) shows that the conjecture of Fields (1979), which 
has been inferred from numerical calculations with b = L, holds for arbitrary scale 
factor b. 

The Hamiltonian for the X Y  model studied by Fields (1979) differs slightly from 
(1). Both Hamiltonians can be related through the change of variable J = j / (  1 + 6). 
The RG recursion equation for the variable j can be obtained from (16a).  One has 
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The iteration of equations (18a)  and (19) yields 

J " / J  = 1 - x  = 2 6 / ( 1 + 6 )  

jx/ j = 1 - x 2  

when L >> 1 and x # 1 .  The gap in the spectrum of the Hamiltonian ( 1 )  is A/2J = 8" 
or, in terms of the variable j ,  A / 2 j  = +( 1 - x)". Here v = 1 and these expressions for 
the gap hold for the whole range 0 s  6 1 (i.e. 0 s  x s 1) (Fields 1979). The results 
(20) state that the quantity i(1 + 6 ) J " / J  is more suitable to study the behaviour of the 
gap away from criticality than the quantity i j e / j  used by Fields (1979). Typical results 
plotted in figure 1 illustrate this point. We have plotted the quantities +jx/j and iJ"/  J 
as a function of x for several mappings. The curves A, B and C refer to the first 
quantity while the curves D, E and F refer to the second one. They correspond to the 
mappings ( L ,  L / b ) = ( 3 , 1 )  (curves A and D), ( 7 , l )  (curves B and E) and (15 ,13)  
(curves C and F). The curves A and B correspond to the calculation of Fields (1979). 
The curves C and F do not differ much, on the scale of the figure, from the quantities 
i( 1 - x') and $( 1 - x), respectively. We have checked that the quantity iJ"/  J computed 
with different mappings ( L ,  L - 2 )  (i.e. b = L / ( L - 2 ) ) ,  with L = 3 ,  5, 7, 9, 1 1 ,  13, 
converges rapidly to the results shown for (15,13) .  For example, the estimate of the 
index vgives v=0 .76(3 ,1 ) ,0 .90 (5 ,3 ) ,0 .94 (7 ,5 ) ,0 .96 (9 ,7 ) ,0 .97 (11 ,9 ) ,0 .99 (13 ,1 l ) .  

0 0.2 0.6 
X 

i o  

Figure 1. Plot of the quantity Q ( x )  as a function of x for several mappings (L, L / b ) .  
Q ( x ) = f j m / J  for the curves A(3,1) ,  B(7, l ) ,  C(15,13), and Q(x)  =43"/3 for the curves 
W3, I ) ,  E(7, I ) ,  F(15,13). 

This critical index can also be obtained from the linearisation of the RG equations 
at the critical point (6*  = J* = 0). The linearisation yields (Fisher 1982) 

6 ' = b 6 =  b"S (210)  

J ' = ( L +  b ) / [ b ( L + l ) ] J =  b-'J (21b) 
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from which one finds that v = 1 and that the dynamical exponent, z, is given by 

z = 1 -  
1 

In b 
ln[(L+ b ) / ( L +  l)] .  .- 

The finite-size corrections for z can then be estimated. One finds 

z = 1 -O( ln  2/ln L )  

z = 1 - O( 1/ L )  L>>1,  b - 1  (24) 

L >> 1, b = L (23) 

in the case of the simple RG transformation ( L ,  1) and 

in the case of the RG transformation of Sarker ( L ,  L/  b). For example, a (15, 1) mapping 
yields z = 0.77 and a (15, 13) gives z = 0.93. The errors are of the same order of 
magnitude as those indicated in (23) and (24). 

The differential renormalisation group equations are obtained from (21) taking the 
limit L+m, b + l .  One finds 

d J (  / ) / d l  = - J (  I )  ( 2 5 ~ )  

dS( l ) /d l=6(1 )  (25 b) 

where we have set b = e'. The field J ( I )  is thus an irrelevant field with the exponent 
-z  = -1. The quantity 6 ( I )  is the only relevant field (with the exponent v = 1). Note 
that the quantity J ( I ) S ( I )  is left invariant upon an infinitesimal change of scale. The 
solutions of the linear differential equations (25) are 

(26a) 

) ( I )  = J e-' (26b) 

and J ( 1 ) 6 ( I ) = J S .  The scaling laws for the gap and for the singular part of the 
ground-state energy density (respectively, the analogues of the inverse of the correlation 
length and of the singular part of the free energy density for two-dimensional systems 
(Kogut 1979)) are 

6( I )  = 6 e' 

A(6) = e-'A(Se', e-') 

A(  6 )  = e-21f( Se', e-') 

(27a 1 
(276) 

where J has been taken as the unit of energy. Choosing I to satisfy 6e' = 1 yields 

A(6 )=6A(1 ,6 )  (280) 

A ( S )  = S2ff(1, 6 ) .  (28b) 

A comparison with the exact solution (Fields 1979) shows that A( 1,O) is a constant 
whilef(1, 6 )  -In 6, i.e. the scaling functionf(1, 6)  is non-analytic at the critical point. 
Therefore ] ( I )  is a dangerous irrelevant field (Fisher 1982). 

Of course the procedure of Sarker for constructing the RG equations discards other 
irrelevant variables. The above result indicates, however, that the coupling constant 
is the leading irrelevant one. The rapid convergence of the results for the gap to the 
exact value, away from criticality, supports this. 

In conclusion, we have shown that the RG method of Sarker is a reliable real space 
method which is able to describe quantitatively the properties of the dimerised X Y  
system for the whole range of dimerisation parameter. This method, which, until now, 
has not been widely applied, should be applicable to other Hamiltonians. 
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